Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Data Brief ; 54: 110374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623553

RESUMO

This data article describes the extensive experimental dataset of friction hysteresis measured during the round robin test of the original research article [1]. The round robin test was performed on the two different fretting rigs of Imperial College London and Politecnico di Torino, and consisted of recording comparable friction hysteresis loops on specimen pairs manufactured from the same batch of raw stainless steel. The reciprocating motion of the specimens was performed at room temperature under a wide range of test conditions, including different normal loads, displacement amplitudes, nominal areas of contact and excitation frequencies of 100 Hz and 175 Hz. Friction forces and tangential relative displacements for each specimen pair were recorded and stored as hysteresis raw data. Each hysteresis loop was post-processed to extract friction coefficient, tangential contact stiffness and energy dissipated, whose evolution with wear was thus obtained and stored as well. MATLABⓇ scripts for post-processing and plotting data are included too. The dataset can be used by researchers as a benchmark to validate theoretical models or numerical simulations of friction hysteresis models and wear mechanisms, and also to study the physics of friction hysteresis and its contact parameters. This friction data can also be used as input in models for nonlinear dynamics applications as well as to provide information on the contact measurement uncertainty under fretting motion. Other applications include using this data as a training set for machine learning applications or data-driven models, as well as supporting grant applications.

2.
ACS Sens ; 9(4): 1842-1856, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38619068

RESUMO

This article presents a parametrized response model that enhances the limit of detection (LOD) of piezoelectrically driven microcantilever (PD-MC) based gas sensors by accounting for the adsorption-induced variations in elastic properties of the functionalization layer (binder) and the nonlinear motional dynamics of the PD-MC. The developed model is demonstrated for quantifying cadaverine, a volatile biogenic diamine whose concentration is used to assess the freshness of meat. At low concentrations of cadaverine, an increase in the resonance frequency is observed, contrary to the expected reduction due to mass added by adsorption. The study explores the variations in the elastic modulus vis-à-vis the adsorbed mass of cadaverine and derives the resonance frequency to the adsorbed mass response function. We advance a blended technique involving the analysis of atomic force microscopy (AFM) force-distance (f-d) curves and fitting of the quartz crystal microbalance (QCM) impedance response spectrum to deduce the adsorption-induced changes in the viscoelastic properties of the functionalization layer. The findings obtained are subsequently employed in modeling the response function for a structurally nonhomogenous PD-MC, highlighting the significance of the functionalization layer to the global elastic properties. The structural composition of the PD-MC beam adopted herein features a trapezoidal base hosting the actuating piezoelectric stratum and a rectangular free end with a functionalization layer. The Euler-Bernoulli beam theory coupled with Hamilton's principle is used to develop the equation of motion, which is subsequently discretized into a set of nonlinear ordinary differential equations via Galerkin expansion, and the solutions to the first fundamental mode of vibration are determined using the method of multiple scales. The obtained solutions provide a basis for deducing the nonlinear response function model to the adsorbed mass. The derived model is validated by recorded resonance frequency changes resulting from exposure to known concentrations of cadaverine. We demonstrate that the increase in resonance frequency for low concentrations of cadaverine is due to the dominance of the variation of the elastic modulus of the functionalization layer originating from the initial binder-analyte interactions over damping due to added mass. It is concluded that the developed nonlinear response function model can reliably be used to quantify the cadaverine concentration at low concentrations with an elevated Limit of Detection.


Assuntos
Gases , Dinâmica não Linear , Gases/química , Gases/análise , Técnicas de Microbalança de Cristal de Quartzo/métodos , Limite de Detecção
3.
Biomimetics (Basel) ; 9(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667214

RESUMO

During the development of the nervous system, neuronal cells extend axons and dendrites that form complex neuronal networks, which are essential for transmitting and processing information. Understanding the physical processes that underlie the formation of neuronal networks is essential for gaining a deeper insight into higher-order brain functions such as sensory processing, learning, and memory. In the process of creating networks, axons travel towards other recipient neurons, directed by a combination of internal and external cues that include genetic instructions, biochemical signals, as well as external mechanical and geometrical stimuli. Although there have been significant recent advances, the basic principles governing axonal growth, collective dynamics, and the development of neuronal networks remain poorly understood. In this paper, we present a detailed analysis of nonlinear dynamics for axonal growth on surfaces with periodic geometrical patterns. We show that axonal growth on these surfaces is described by nonlinear Langevin equations with speed-dependent deterministic terms and gaussian stochastic noise. This theoretical model yields a comprehensive description of axonal growth at both intermediate and long time scales (tens of hours after cell plating), and predicts key dynamical parameters, such as speed and angular correlation functions, axonal mean squared lengths, and diffusion (cell motility) coefficients. We use this model to perform simulations of axonal trajectories on the growth surfaces, in turn demonstrating very good agreement between simulated growth and the experimental results. These results provide important insights into the current understanding of the dynamical behavior of neurons, the self-wiring of the nervous system, as well as for designing innovative biomimetic neural network models.

4.
Bipolar Disord ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639725

RESUMO

INTRODUCTION: Alterations in motor activity are well-established symptoms of bipolar disorder, and time series of motor activity can be considered complex dynamical systems. In such systems, early warning signals (EWS) occur in a critical transition period preceding a sudden shift (tipping point) in the system. EWS are statistical observations occurring due to a system's declining ability to maintain homeostasis when approaching a tipping point. The aim was to identify critical transition periods preceding bipolar mood state changes. METHODS: Participants with a validated bipolar diagnosis were included to a one-year follow-up study, with repeated assessments of the participants' mood. Motor activity was recorded continuously by a wrist-worn actigraph. Participants assessed to have relapsed during follow-up were analyzed. Recognized EWS features were extracted from the motor activity data and analyzed by an unsupervised change point detection algorithm, capable of processing multi-dimensional data and developed to identify when the statistical property of a time series changes. RESULTS: Of 49 participants, four depressive and four hypomanic/manic relapses among six individuals occurred, recording actigraphy for 23.8 ± 0.2 h/day, for 39.8 ± 4.6 days. The algorithm detected change points in the time series and identified critical transition periods spanning 13.5 ± 7.2 days. For depressions 11.4 ± 1.8, and hypomania/mania 15.6 ± 10.2 days. CONCLUSION: The change point detection algorithm seems capable of recognizing impending mood episodes in continuous flowing data streams. Hence, we present an innovative method for forecasting approaching relapses to improve the clinical management of bipolar disorder.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38582679

RESUMO

The present paper provides a historical context for chaos theory, originating in the 1960s with Edward Norton Lorenz's efforts to predict weather patterns. It introduces chaos theory, fractal geometry, nonlinear dynamics, and the butterfly effect, highlighting their exploration of complex systems. The authors aim to bridge the gap between chaos theory and oral and maxillofacial surgery (OMFS) through a literature review, exploring its applications and emphasizing the prevention of minor deviations in OMFS to avoid significant consequences. A comprehensive literature review was conducted on PubMed, Web of Science, and Google Scholar databases. The selection process adhered to the PRISMA-ScR guidelines and Leiden Manifesto principles. Articles focusing on chaos theory principles in health sciences, published in the last two decades, were included. The review encompassed 37 articles after screening 386 works. It revealed applications in outcome variation, surgical planning, simulations, decision-making, and emerging technologies. Potential applications include predicting infections, malignancies, dental fractures, and improving decision-making through disease prediction systems. Emerging technologies, despite criticisms, indicate advancements in AI integration, contributing to enhanced diagnostic accuracy and personalized treatment strategies. Chaos theory, a distinct scientific framework, holds potential to revolutionize OMFS. Its integration with advanced techniques promises personalized, less traumatic surgeries and improved patient care. The interdisciplinary synergy of chaos theory and emerging technologies presents a future in which OMFS practices become more efficient, less traumatic, and achieve a level of precision never seen before.

6.
Sci Rep ; 14(1): 8289, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594349

RESUMO

This paper is focused on the diagnostics of multicopter UAV propulsion system, in which the temporary transient states occur during operation in faulty conditions (eg. not all motor phases working properly). As a diagnostic sensor, the piezo strip has been used, which is very sensitive to any vibrations of the multi-rotor frame. The paper concerns the precise location of the sensor for more effective monitoring of the propulsion system state. For this purpose, a nonlinear analysis of the vibration times series was carefully presented. The obtained non-linear time series were studied with the recurrence analysis in short time windows, which were sensitive to changes in Unmanned Aerial Vehicle motor speeds. The tests were carried out with different percentage of the pulse width modulation signal used for the operation of the brushless motor and for different locations of the piezosensor (side and top planes of the multicopter arm). In the article, it was shown that the side location of the piezosensor is more sensitive to changes in the Unmanned Aerial Vehicle propulsion system, which was studied with the Principal Component Analysis method applied for four main recurrence quantifications. The research presented proves the possibility of using nonlinear recurrence analysis for propulsion system diagnostics and helps to determine the optimal sensor location for more effective health monitoring of multicopter motor.

7.
MethodsX ; 12: 102625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425498

RESUMO

This paper introduces a novel method called Wide-Array of Nonlinear Dynamics Approximation (WyNDA) for extracting mathematical models of dynamical systems from data. A key advantage of this method over existing approaches lies in its suitability for online implementation. Moreover, WyNDA stands out by not relying on optimization or machine learning, ensuring computational efficiency. The fundamental concept revolves around approximating the unknown function of a dynamical system through a diverse set of basis functions that encapsulate the available data. An adaptive observer is then employed to iteratively refine this approximation and estimate the associated parameters. The efficacy of the proposed method is demonstrated through numerical simulations encompassing linear systems, nonlinear systems, and control systems. The results underscore the method's ability to successfully unveil the governing equations of dynamical systems, highlighting its potential for extracting intricate system dynamics from observational data.•WyNDA represents a novel approach for uncovering mathematical models of dynamical systems from data.•Utilizing a series of basis functions, WyNDA effectively approximates the unknown structure inherent in dynamical systems.•The validation of WyNDA involves benchmark equations of dynamical systems, confirming its efficacy in diverse scenarios.

8.
Int J Biometeorol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453789

RESUMO

In 2022, Mexico registered an increase in dengue cases compared to the previous year. On the other hand, the amount of precipitation reported annually was slightly less than the previous year. Similarly, the minimum-mean-maximum temperatures recorded annually were below the previous year. In the literature, it is possible to find studies focused on the spread of dengue only for some specific regions of Mexico. However, given the increase in the number of cases during 2022 in regions not considered by previously published works, this study covers cases reported in all states of the country. On the other hand, determining a relationship between the dynamics of dengue cases and climatic factors through a computational model can provide relevant information on the transmission of the virus. A multiple-learning computational approach was developed to simulate the number of the different risks of dengue cases according to the classification reported per epidemiological week by considering climatic factors in Mexico. For the development of the model, the data were obtained from the reports published in the Epidemiological Panorama of Dengue in Mexico and in the National Meteorological Service. The classification of non-severe dengue, dengue with warning signs, and severe dengue were modeled in parallel through an artificial neural network model. Five variables were considered to train the model: the monthly average of the minimum, mean, and maximum temperatures, the precipitation, and the number of the epidemiological week. The selection of variables in this work is focused on the spread of the different risks of dengue once the mosquito begins transmitting the virus. Therefore, temperature and precipitation were chosen as climatic factors due to the close relationship between the density of adult mosquitoes and the incidence of the disease. The Levenberg-Marquardt algorithm was applied to fit the coefficients during the learning process. In the results, the ANN model simulated the classification of the different risks of dengue with the following precisions (R2): 0.9684, 0.9721, and 0.8001 for non-severe dengue, with alarm signs and severe, respectively. Applying a correlation matrix and a sensitivity analysis of the ANN model coefficients, both the average minimum temperature and precipitation were relevant to predict the number of dengue cases. Finally, the information discovered in this work can support the decision-making of the Ministry of Health to avoid a syndemic between the increase in dengue cases and other seasonal diseases.

9.
Entropy (Basel) ; 26(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539730

RESUMO

Catchment classification plays an important role in many applications associated with water resources and environment. In recent years, several studies have applied the concepts of nonlinear dynamics and chaos for catchment classification, mainly using dimensionality measures. The present study explores prediction as a measure for catchment classification, through application of a nonlinear local approximation prediction method. The method uses the concept of phase-space reconstruction of a time series to represent the underlying system dynamics and identifies nearest neighbors in the phase space for system evolution and prediction. The prediction accuracy measures, as well as the optimum values of the parameters involved in the method (e.g., phase space or embedding dimension, number of neighbors), are used for classification. For implementation, the method is applied to daily streamflow data from 218 catchments in Australia, and predictions are made for different embedding dimensions and number of neighbors. The prediction results suggest that phase-space reconstruction using streamflow alone can provide good predictions. The results also indicate that better predictions are achieved for lower embedding dimensions and smaller numbers of neighbors, suggesting possible low dimensionality of the streamflow dynamics. The classification results based on prediction accuracy are found to be useful for identification of regions/stations with higher predictability, which has important implications for interpolation or extrapolation of streamflow data.

10.
Sci Rep ; 14(1): 5390, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443505

RESUMO

This paper aims to explore the rotatory spatial motion of an asymmetric rigid body (RB) under constant body-fixed torques and a nonzero first component gyrostatic moment vector (GM). Euler's equations of motion are used to derive a set of dimensionless equations of motion, which are then proposed for the stability analysis of equilibrium points. Specifically, this study develops 3D phase space trajectories for three distinct scenarios; two of them are applied constant torques that are directed on the minor and major axes, while the third one is the action of applied constant torque on the body's middle axis. Novel analytical and simulation results for both scenarios of constant torque applied along the minor and middle axes are provided in the context of separatrix surfaces, equilibrium manifolds, periodic or non-periodic solutions, and periodic solutions' extreme. Concerning the scenario of a directed torque on the major axis, a numerical solution for the problem is presented in addition to a simulation of the graphed results for the angular velocities' trajectories in various regions. Moreover, the influence of GM is examined for each case and a full modeling for the body's stability has been present. The exceptional impact of these results is evident in the development and assessment of systems involving asymmetric RBs, such as satellites and spacecraft. It may serve as a motivating factor to explore different angles within the GM in similar cases, thereby influencing various industries, including engineering and astrophysics applications.

11.
Proc Natl Acad Sci U S A ; 121(11): e2312942121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437548

RESUMO

Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Humanos , Reprogramação Celular/genética , Diferenciação Celular , Controle Comportamental , Aprendizado de Máquina
12.
Environ Sci Pollut Res Int ; 31(15): 23037-23054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418786

RESUMO

As a pivotal element in market mechanisms, carbon trading is increasingly recognized as crucial for achieving China's Carbon Peaking and Carbon Neutrality Goals. This study introduces a comprehensive dynamic model, integrating carbon trading, emissions, economic growth, and green technology innovation, to offer a holistic understanding of the interplay between these domains. Utilizing principles from nonlinear dynamics and chaos theory, the model is adept at simulating various scenarios and assessing the effectiveness of government policies in stabilizing these complex systems. In-depth analysis provided by this research sheds light on the nuanced impact of carbon trading policies on sustainable development. Key findings highlight (1) Carbon trading's essential role as a catalyst in propelling sustainable and high-quality growth. (2) A strong positive relationship is observed between the sophistication of the carbon trading mechanism and its effectiveness in stimulating green technology innovation and fostering high-quality green development. Notably, carbon trading's influence on green technology innovation markedly enhances the efficacy of carbon emission reduction strategies. (3) Government regulations are instrumental in augmenting carbon prices, thus incentivizing increased corporate participation in emission reduction and enhancing the overall impact of carbon emission reduction. Nevertheless, the study identifies a critical threshold in regulatory intensity, beyond which there is a risk of system destabilization ( a 3 ≥ 0.032 ). These findings underscore the imperative for developing an integrated national carbon emission trading market, prioritizing sustainable growth strategies and diligently pursuing China's environmental objectives.


Assuntos
Carbono , Desenvolvimento Econômico , Governo , Regulamentação Governamental , Dinâmica não Linear , China
13.
J Mot Behav ; 56(3): 356-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38423521

RESUMO

Postural control involves complex nonlinear dynamics influenced by the interaction and adaptation of different sensory inputs. However, it is not how these inputs interact with one another due to the complex complications associated with aging, particularly concerning the nonlinear dynamics of postural sway. This study aimed to examine how different sensory inputs, surface conditions, and aging factors to influence postural control mechanisms between young and older by investigating the nonlinear dynamics of postural control using the stabilogram diffusion analysis (SDA) and entropy methods. SDA parameters were much greater on foam surfaces than on firm surfaces for both groups in eyes-open and eyes-closed conditions (p ≤ 0.05). For older subjects, there were significant differences in entropy values between firm and foam surfaces (p ≤ 0.05) but no significant difference between eyes conditions (p > 0.05). For both SDA and entropy parameters, surface and age interaction potentially revealed significant differences between young and older subjects (p ≤ 0.05) than eyes and age interaction. The present study provided insight into uncovering the complex relationships between sensory inputs, surface conditions, age, and their potential interaction effects on postural control mechanisms that could mitigate falls and alleviate the fear of falling, particularly in older populations.


Assuntos
Acidentes por Quedas , Dinâmica não Linear , Humanos , Idoso , Medo , Envelhecimento , Equilíbrio Postural
14.
J Physiol ; 602(5): 809-834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353596

RESUMO

Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.


Assuntos
Cálcio , Respiração , Animais , Neurônios/fisiologia , Tronco Encefálico/fisiologia , Mamíferos , Centro Respiratório/fisiologia
15.
Artif Life ; 30(1): 16-27, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358121

RESUMO

In the mid-20th century, two new scientific disciplines emerged forcefully: molecular biology and information-communication theory. At the beginning, cross-fertilization was so deep that the term genetic code was universally accepted for describing the meaning of triplets of mRNA (codons) as amino acids. However, today, such synergy has not taken advantage of the vertiginous advances in the two disciplines and presents more challenges than answers. These challenges not only are of great theoretical relevance but also represent unavoidable milestones for next-generation biology: from personalized genetic therapy and diagnosis to Artificial Life to the production of biologically active proteins. Moreover, the matter is intimately connected to a paradigm shift needed in theoretical biology, pioneered a long time ago, that requires combined contributions from disciplines well beyond the biological realm. The use of information as a conceptual metaphor needs to be turned into quantitative and predictive models that can be tested empirically and integrated in a unified view. Successfully achieving these tasks requires a wide multidisciplinary approach, including Artificial Life researchers, to address such an endeavour.


Assuntos
Biologia , Código Genético
16.
Math Biosci Eng ; 21(1): 861-883, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303446

RESUMO

The emergence of many presymptomatic hidden transmission events significantly complicated the intervention and control of the spread of COVID-19 in the USA during the year 2020. To analyze the role that presymptomatic infections play in the spread of this disease, we developed a state-level metapopulation model to simulate COVID-19 transmission in the USA in 2020 during which period the number of confirmed cases was more than in any other country. We estimated that the transmission rate (i.e., the number of new infections per unit time generated by an infected individual) of presymptomatic infections was approximately 59.9% the transmission rate of reported infections. We further estimated that {at any point in time the} average proportion of infected individuals in the presymptomatic stage was consistently over 50% of all infected individuals. Presymptomatic transmission was consistently contributing over 52% to daily new infections, as well as consistently contributing over 50% to the effective reproduction number from February to December. Finally, non-pharmaceutical intervention targeting presymptomatic infections was very effective in reducing the number of reported cases. These results reveal the significant contribution that presymptomatic transmission made to COVID-19 transmission in the USA during 2020, as well as pave the way for the design of effective disease control and mitigation strategies.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução
17.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405742

RESUMO

Much of the complexity and diversity found in nature are driven by nonlinear phenomena, and this holds true for the brain. Nonlinear dynamics theory has been successfully utilized in explaining brain functions from a biophysics standpoint, and the field of statistical physics continues to make substantial progress in understanding brain connectivity and function. This study delves into complex brain functional connectivity using biophysical nonlinear dynamics approaches. We aim to uncover hidden information in high-dimensional and nonlinear neural signals, with the hope of providing a useful tool for analyzing information transitions in functionally complex networks. By utilizing phase portraits and fuzzy recurrence plots, we investigated the latent information in the functional connectivity of complex brain networks. Our numerical experiments, which include synthetic linear dynamics neural time series and a biophysically realistic neural mass model, showed that phase portraits and fuzzy recurrence plots are highly sensitive to changes in neural dynamics, and they can also be used to predict functional connectivity based on structural connectivity. Furthermore, the results showed that phase trajectories of neuronal activity encode low-dimensional dynamics, and the geometric properties of the limit-cycle attractor formed by the phase portraits can be used to explain the neurodynamics. Additionally, our results showed that the phase portrait and fuzzy recurrence plots can be used as functional connectivity descriptors, and both metrics were able to capture and explain nonlinear dynamics behavior during specific cognitive tasks. In conclusion, our findings suggest that phase portraits and fuzzy recurrence plots could be highly effective as functional connectivity descriptors, providing valuable insights into nonlinear dynamics in the brain.

18.
Micromachines (Basel) ; 15(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38398967

RESUMO

Synchronization in microstructures is a widely explored domain due to its diverse dynamic traits and promising practical applications. Within synchronization analysis, the synchronization bandwidth serves as a pivotal metric. While current research predominantly focuses on symmetric evaluations of synchronization bandwidth, the investigation into potential asymmetries within nonlinear oscillators remains unexplored, carrying implications for sensor application performance. This paper conducts a comprehensive exploration employing straight and arch beams capable of demonstrating linear, hardening, and softening characteristics to thoroughly scrutinize potential asymmetry within the synchronization region. Through the introduction of weak harmonic forces to induce synchronization within the oscillator, we observe distinct asymmetry within its synchronization range. Additionally, we present a robust theoretical model capable of fully capturing the linear, hardening, and softening traits of resonators synchronized to external perturbation. Further investigation into the effects of feedback strength and phase delay on synchronization region asymmetry, conducted through analytical and experimental approaches, reveals a consistent alignment between theoretical predictions and experimental outcomes. These findings hold promise in providing crucial technical insights to enhance resonator performance and broaden the application landscape of MEMS (Micro-Electro-Mechanical Systems) technology.

19.
Psychother Res ; : 1-17, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252916

RESUMO

INTRODUCTION: Flexibility, the ability of an individual to adapt to environmental changes in ways that facilitate goal attainment, has been proposed as a potential mechanism underlying psychopathology and psychotherapy. In psychotherapy, most findings are based on self-report measures that have important limitations. We propose a multimodal, multi-dyad approach based on a nonlinear dynamical systems framework to capture the complexity of this concept. METHOD: A new research paradigm was designed to explore the validity of the proposed conceptual model. The paradigm includes a psychotherapy-like social interaction, during which body movement and facial expressiveness data were collected. We analyzed the data using Hankel Alternative View of Koopmann analysis to reconstruct attractors of the observed behaviors and compare them. RESULTS: The patterns of behavior in the two cases differ, and differences in the reconstructed attractors correspond with differences in self-report measures and behavior in the interactions. CONCLUSIONS: The case studies show that information provided by a single modality is not enough to provide the full picture, and multiple modalities are needed. These observations can serve as an initial support for our claims that a multi-modal and multi-dyad approach to flexibility can address some of the issues of measurement in the field.

20.
Environ Sci Pollut Res Int ; 31(6): 9288-9316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190064

RESUMO

In this paper, we examined the asymmetric dynamics and causality of technological progress--proxied by green technology innovation--on both consumption-based carbon (CCO2) and territory-based carbon (TCO2) emissions in Saudi Arabia using quarterly data from 1990Q1 to 2021Q4. Our initial results reject the normality and linearity assumptions of data series and thus emphasize that the observed associations are quantile dependent. We firstly utilized the quantile-on-quantile regression (QQR) approach to draw the interdependency between green technology innovation and both CCO2 and TCO2 emissions. We found a strong emission-mitigating impact of green technology innovation only at (extreme) upper emission levels. We also identified a weak positive effect at (extreme) higher emission quantiles. Furthermore, we found that higher emission levels are linked with lower green technology innovation across all emission quantiles whereas a weak positive effect is perceived at lower and medium emission quantiles. We further utilized linear and nonlinear Granger causality-in- quantiles (GCQ) tests to capture an entire picture of the impact of green technology innovation on both CCO2 and TCO2 emissions. Under linear specifications of the quantile regression model, we found evidence of strong bidirectional causality between carbon emissions and green technology innovation across lower and upper quantiles. However, we found unidirectional causalities from carbon emissions to green technology innovation at medium quantiles of the conditional distribution. Besides, there is no causality at both extreme lower and extreme upper quantiles. Under nonlinear specifications of the quantile regression model, we found a weak unidirectional causality from green technology innovation to carbon emissions at (extreme) lower quantiles. We also found a weak unidirectional causality from carbon emissions to green technology innovation at medium and extreme upper quantiles. Overall, our findings indicate that green technology innovation helps abate both CCO2 and TCO2 emissions in Saudi Arabia. Our study shows policies that target green technology innovation would significantly change carbon emissions.


Assuntos
Carbono , Tecnologia , Arábia Saudita , Causalidade , Políticas , Dióxido de Carbono , Desenvolvimento Econômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...